
Mahjong AI GuoShiWuShuang

Chao-Zhe Kong
Peking University

kcz@pku.edu.cn

Abstract
GuoShiWuShuang is a Chinese Standard
Mahjong AI focused on the tile efficiency.

1 Introduction
On the tile efficiency, GuoShiWuShuang uses two differ-
ent algorithms separately for hand tiles with big/small
shanten.

GuoShiWuShuang also tried to consider defense, but
it failed to achieve a good effect.

2 Tile Efficiency
The tile efficiency1 is a process of hand development,
where a player seeks to make maximized use of either
draws and/or discards to attain or even complete the
hand as fast as possible.

In the tile efficiency, we pay little attention to other
players’ behaviors. It is just like a single-player game.

For convenience, just algorithm for discarding are in-
troduced below. That is, which tile should the player
chooses to discard in his own round. The algorithm for
deciding whether Pong/Kong/Chow is approximate.

Shanten 2 is the number of tiles needed for reaching
tenpai. In other words, a player needs at least shanten+1
rounds to without considering the limit of points. When
shanten is small, we will have enough time to search
out all possible situations to win in the least rounds.
Otherwise, there exists a efficient greedy algorithm.

2.1 Search Algorithm
For convenience, we simplify the game as a single-player
game with only drawing and discarding. In each round,
the only player draws a tile from all the leaving tiles with
uniform random and chooses one of his tiles to discard.

Define P (S, l) as the maximal possibility that the
player with tiles set S can win in just l rounds. Here
S is a multiset.

Suppose the least rounds we need to win is l, then we
can just discard the tile t with maximal P (S \ {t}, l) .

1http://arcturus.su/wiki/Tile_efficiency
2http://arcturus.su/wiki/Shanten

Define win(S) = 1 when the player with tiles set S
has won, and win(S) = 0 otherwise.

We have the following expression to calculate P (S, l)
:

P (S, l) =

∑|T |−1
i=0 P ′(S

∪
{Ti}, l)

|T |
Where T0, T1, . . . T|T | are all leaving tiles,and

P ′(S, l) =

{
win(S) l = 0

max{P (S − {t}, l)|t ∈ S} l > 0

Some optimizations are used in my implement to make
it faster.

2.2 Greedy Algorithm
Enumerate the tile to discard and use dynamic program-
ming to calculate the minimal round to win and the pos-
sibility of the leaving tiles approximately.

For convenience, we simplify the game as a single-
player game same as before and only consider the win
form of 4 melds and 1 pair.

The dynamic programming includes two parts:
(1) calculate the minimal round to get i melds and j

pairs (i = 0, 1, 2, 3, 4; j = 0, 1) and the possibility ap-
proximately for Dot, Bamboo, Charater and Honor sep-
arately.

(2) merge the output of (1).

part 1
This problem is trivial for Honor and same for Dot, Bam-
boo and Charater. So we only consider the approach for
Dot.

Define minRound(i,meldCount, pairCount, c1, c2) as
the minRound to get meldCount melds and pairCount
pairs using Dot 1, 2 . . . i, and there are c1 Dot i− 1 and
i left for get melds of Dot i− 1, i, i+ 1 in future, and c2
Dot i left for get melds of Dot i, i+ 1, i+ 2 in future.

It is easy to transfer and calculate the possibility ap-
proximately at the same time.

part 2
Think Dot, Bamboo, Charater and Honor as different
items, this problem is similar to knapsack problem.

http://arcturus.su/wiki/Tile_efficiency
http://arcturus.su/wiki/Shanten

Define minRound(i,meldCount, pairCount) as the
minRound to get meldCount melds and pairCount pairs
using item 1, 2, . . . i.

It is easy to transfer and calculate the possibility ap-
proximately at the same time.

	Introduction
	Tile Efficiency
	Search Algorithm
	Greedy Algorithm
	part 1
	part 2

